Step of Proof: assert_of_bnot
9,38
postcript
pdf
Inference at
*
2
I
of proof for Lemma
assert
of
bnot
:
1.
p
:
(
(
p
))
(
(
p
))
latex
by ((((BoolInd 1)
CollapseTHEN (((Unfolds ``assert bnot not`` 0)
CollapseTHEN (Rewrite (
C
RepeatC (HigherC ifthenelse_evalC)) 0))
))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1. True
False
C1:
False
C
.
Definitions
,
P
Q
,
True
,
ff
,
if
b
then
t
else
f
fi
,
tt
,
t
T
,
A
,
b
,
b
,
P
Q
,
False
,
Unit
,
,
Lemmas
false
wf
,
true
wf
origin